Abrupt maturation of a spike-synchronizing mechanism in neocortex.

نویسندگان

  • Michael A Long
  • Scott J Cruikshank
  • Michael J Jutras
  • Barry W Connors
چکیده

Synchronous activity is common in the neocortex, although its significance, mechanisms, and development are poorly understood. Previous work showed that networks of electrically coupled inhibitory interneurons called low-threshold spiking (LTS) cells can fire synchronously when stimulated by metabotropic glutamate receptors. Here we found that the coordinated inhibition emerging from an activated LTS network could induce correlated spiking patterns among neighboring excitatory cells. Synchronous activity among LTS cells was absent at postnatal day 12 (P12) but appeared abruptly over the next few days. The rapid development of the LTS-synchronizing system coincided with the maturation of the inhibitory outputs and intrinsic membrane properties of the neurons. In contrast, the incidence and magnitude of electrical synapses remained constant between P8 and P15. The developmental transformation of LTS interneurons into a synchronous, oscillatory network overlaps with the onset of active somatosensory exploration, suggesting a potential role for this synchronizing system in sensory processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms.

The intracortical and thalamocortical synchronization of spontaneously occurring or bicuculline-induced seizures, consisting of spike-wave (SW) or polyspike-wave (PSW) complexes at 2-3 Hz and fast runs at 10-15 Hz, was investigated in cats under ketamine-xylazine anesthesia. We used single and dual simultaneous intracellular recordings from cortical areas 5 and 7, and extracellular recordings o...

متن کامل

Discrete place fields of hippocampal formation interneurons.

The spike discharge of hippocampal excitatory principal cells, also called "place cells," is highly location specific, but the discharge of local inhibitory interneurons is thought to display relatively low spatial specificity. Whereas in other brain regions, such as sensory neocortex, the activity of interneurons is often exquisitely stimulus selective and directly determines the responses of ...

متن کامل

Spike-Timing-Dependent Hebbian Plasticity as Temporal Difference Learning

A spike-timing-dependent Hebbian mechanism governs the plasticity of recurrent excitatory synapses in the neocortex: synapses that are activated a few milliseconds before a postsynaptic spike are potentiated, while those that are activated a few milliseconds after are depressed. We show that such a mechanism can implement a form of temporal difference learning for prediction of input sequences....

متن کامل

Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex

Structural plasticity governs the long-term development of synaptic connections in the neocortex. While the underlying processes at the synapses are not fully understood, there is strong evidence that a process of random, independent formation and pruning of excitatory synapses can be ruled out. Instead, there must be some cooperation between the synaptic contacts connecting a single pre- and p...

متن کامل

Cellular and network mechanisms of genetically-determined absence seizures.

The absence epilepsies are characterized by recurrent episodes of loss of consciousness associated with generalized spike-and-wave discharges, with an abrupt onset and offset, in the thalamocortical system. In the absence of detailed neurophysiological studies in humans, many of the concepts regarding the pathophysiological basis of absence seizures are based on studies in animal models. Each o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 32  شماره 

صفحات  -

تاریخ انتشار 2005